Respuesta :
We have the following function:
 p (x) = - 2 (x-9) ^ 2 +200
 We derive to find the maximum of the function:
 p '(x) = - 4 (x-9)
 Rewriting:
 p '(x) = - 4x + 36
 We match zero:
 -4x + 36 = 0
 We clear x
 x = 36/4
 x = 9 degrees
 The maximum population occurs when x = 9.
 We evaluate the function for this value:
 p (9) = - 2 * (9-9) ^ 2 +200
 p (9) = 200
 Answer:
 The maximum number of fish is:
 p (9) = 200
 p (x) = - 2 (x-9) ^ 2 +200
 We derive to find the maximum of the function:
 p '(x) = - 4 (x-9)
 Rewriting:
 p '(x) = - 4x + 36
 We match zero:
 -4x + 36 = 0
 We clear x
 x = 36/4
 x = 9 degrees
 The maximum population occurs when x = 9.
 We evaluate the function for this value:
 p (9) = - 2 * (9-9) ^ 2 +200
 p (9) = 200
 Answer:
 The maximum number of fish is:
 p (9) = 200
The maximum number of fish is 200.
What is differentiation?
Differentiation is the reverse of integration.
The given function is;
[tex]\rm p(x)=-2(x-9)^2+200[/tex]
The maximum number of fish is determined in the following steps given below.
[tex]\rm p(x)=-2(x-9)^2+200\\\\ p '(x) = - 4 (x-9)\\\\ p '(x) = - 4 x-36\\\\ p '(x) = 0\\\\-4x+36=0\\\\-4x=-36\\\\x=\dfrac{-36}{-4}\\\\x=9[/tex]
Substitute the value of x in the function
[tex]\rm p(9)=-2(9-9)^2+200\\\\p(9)=0+200\\\\ p(9)=200[/tex]
Hence, the maximum number of fish is 200.
To know more about differentiation click the link given below.
https://brainly.com/question/10115447
#SPJ3