Respuesta :
1 slug =
32 lbĀ
f = kxĀ
32 = k(2)Ā
k = 16Ā
c = 8 ( 8 times the
instantaneous velocity)Ā
mx'' + cx' + kx =
8sin4tĀ
x'' + 8x' + 16x =
8sin4tĀ
Find for the
complimentary solution xh:
r² + 8r + 16 = 0Ā
r² + 4r + 4r + 16 =
0Ā
(r + 4)(r + 4) =
0Ā
r = -4, -4 (repeated
roots)Ā
xh = cāe^(-4t) + cāte^(-4t)Ā
Find for the
particular solution xp:
xp = Acos(4t) +
Bsin(4t)Ā
xp' = -4Asin(4t) +
4Bcos(4t)Ā
xp'' = -16Acos(4t) -
16Bsin(4t)Ā
x'' + 8x' + 16x =
8sin(4t)Ā
-16Acos(4t) -
16Bsin(4t) + 8[ -4Asin(4t) + 4Bcos(4t) ] + 16 [ Acos(4t) + Bsin(4t) ] =
8sin(4t)Ā
-16Acos(4t) -
16Bsin(4t) - 32Asin(4t) + 32Bcos(4t) + 16Acos(4t) + 16Bsin(4t) ] =
8sin(4t)Ā
-32Asin(4t) +
32Bcos(4t) = 8sin(4t)Ā
-4Asin(4t) + 4Bcos(4t)
= sin(4t)Ā
We group like terms
and then solve for A and B:
4Bcos(4t) = 0Ā
B = 0Ā
-4Asin(4t) + 4Bcos(4t)
= sin(4t)Ā
-4Asin(4t) =
sin(4t)Ā
A = -¼Ā
xp = Acos(4t) +
Bsin(4t)Ā
xp = -¼cos(4t) + (0)
sin(4t)Ā
xp = -¼cos(4t)Ā
The general solution
is therefore:Ā
x(t) = xh + xpĀ
x(t) = cāe^(-4t) + cāte^(-4t) - ¼ cos(4t)Ā
at t = 0 it starts
from rest that is initial velocity = 0Ā
x'(0) = 0Ā
at t = 0 it starts
from equilibriumĀ
x(0) = 0Ā
x(t) = cāe^(-4t) + cāte^(-4t) - ¼cos(4t)Ā
0 = cā + cā(0) - ¼cos(0)Ā
cā = ¼Ā
x(t) = cāe^(-4t) + cāte^(-4t) - ¼cos(4t)Ā
x(t) =¼e^(-4t) + cāte^(-4t) - ¼cos(4t)Ā
x '(t) = -e^(-4t) + [
-4cāte^(-4t) + cāe^(-4t) ] + sin(4t)Ā
x '(t) = -e^(-4t) - 4cāte^(-4t) + cāe^(-4t) + sin(4t)Ā
x'(0) = 0Ā
0 = -e^(0) - 4cā(0) e^(0) + cāe^(0) + sin(0)Ā
0 = -1 + cā +Ā
= -4cā - 4cā(0) + cāĀ
0= -4(1/4) + cāĀ
cā = 1Ā
x(t) =¼e^(-4t) + cāte^(-4t) - ¼cos(4t)Ā
x(t) =¼e^(-4t) +
te^(-4t) - ¼cos(4t)Ā