A mass of 1 slug, when attached to a spring, stretches it 2 feet and then comes to rest in the equilibrium position. starting at t = 0, an external force equal to f(t) = 8 sin 4t is applied to the system. find the equation of motion if the surrounding medium offers a damping force that is numerically equal to 8 times the instantaneous velocity.

Respuesta :

1 slug = 32 lbĀ 

f = kxĀ 
32 = k(2)Ā 
k = 16Ā 

c = 8 ( 8 times the instantaneous velocity)Ā 

mx'' + cx' + kx = 8sin4tĀ 
x'' + 8x' + 16x = 8sin4tĀ 

Find for the complimentary solution xh:
r² + 8r + 16 = 0 
r² + 4r + 4r + 16 = 0 
(r + 4)(r + 4) = 0Ā 
r = -4, -4 (repeated roots)Ā 
xh = c₁e^(-4t) + cā‚‚te^(-4t)Ā 


Find for the particular solution xp:
xp = Acos(4t) + Bsin(4t)Ā 
xp' = -4Asin(4t) + 4Bcos(4t)Ā 
xp'' = -16Acos(4t) - 16Bsin(4t)Ā 
x'' + 8x' + 16x = 8sin(4t)Ā 
-16Acos(4t) - 16Bsin(4t) + 8[ -4Asin(4t) + 4Bcos(4t) ] + 16 [ Acos(4t) + Bsin(4t) ] = 8sin(4t)Ā 
-16Acos(4t) - 16Bsin(4t) - 32Asin(4t) + 32Bcos(4t) + 16Acos(4t) + 16Bsin(4t) ] = 8sin(4t)Ā 
-32Asin(4t) + 32Bcos(4t) = 8sin(4t)Ā 
-4Asin(4t) + 4Bcos(4t) = sin(4t)Ā 

We group like terms and then solve for A and B:
4Bcos(4t) = 0Ā 
B = 0Ā 

-4Asin(4t) + 4Bcos(4t) = sin(4t)Ā 
-4Asin(4t) = sin(4t)Ā 
A = -¼ 

xp = Acos(4t) + Bsin(4t)Ā 
xp = -¼cos(4t) + (0) sin(4t) 
xp = -¼cos(4t) 

The general solution is therefore:Ā 
x(t) = xh + xpĀ 
x(t) = c₁e^(-4t) + cā‚‚te^(-4t) - ¼ cos(4t)Ā 

at t = 0 it starts from rest that is initial velocity = 0Ā 
x'(0) = 0Ā 

at t = 0 it starts from equilibriumĀ 
x(0) = 0Ā 

x(t) = c₁e^(-4t) + cā‚‚te^(-4t) - ¼cos(4t)Ā 
0 = c₁ + cā‚‚(0) - ¼cos(0)Ā 
c₁ = ¼ 

x(t) = c₁e^(-4t) + cā‚‚te^(-4t) - ¼cos(4t)Ā 
x(t) =¼e^(-4t) + cā‚‚te^(-4t) - ¼cos(4t)Ā 
x '(t) = -e^(-4t) + [ -4cā‚‚te^(-4t) + cā‚‚e^(-4t) ] + sin(4t)Ā 
x '(t) = -e^(-4t) - 4cā‚‚te^(-4t) + cā‚‚e^(-4t) + sin(4t)Ā 

x'(0) = 0Ā 
0 = -e^(0) - 4cā‚‚(0) e^(0) + cā‚‚e^(0) + sin(0)Ā 
0 = -1 + cā‚‚ +Ā 
= -4c₁ - 4cā‚‚(0) + cā‚‚Ā 
0= -4(1/4) + cā‚‚Ā 
cā‚‚ = 1Ā 

x(t) =¼e^(-4t) + cā‚‚te^(-4t) - ¼cos(4t)Ā 
x(t) =¼e^(-4t) + te^(-4t) - ¼cos(4t)Ā