First let us set the variables:
m = mass of the blockÂ
Initial angular speed wi = 2.5 rad/sÂ
Initial distance from axis ri = 0.28 mÂ
Coefficient of static friction u = 0.74Â
Say the smallest distance from the axis in which the block
can remain in place = rfÂ
Using conservation of angular momentum:
m ri^2 wi = m rf^2 wfÂ
Since m is constant, we can cancel that out:Â
ri^2 wi = rf^2 wfÂ
wf = wi (ri/rf)^2 Â Â Â Â Â Â Â Â Â Â Â Â >>>>
(1)
At distance rf, the block just starts to slide, therefore
static friction force = centripetal force:
static friction force = u m gÂ
centripetal force = m wf^2 * rfÂ
Equating the 2 forces:
m wf^2 * rf = u m gÂ
Cancelling m on both sides:Â
wf^2 * rf = u gÂ
wf = sqrt(u g/rf) Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â >>>>
(2)Â
From equations (1) and (2),Â
wi (ri/rf)^2 = sqrt(u g/rf)Â
wi ri^2/rf^2 = sqrt(u g) / sqrt(rf)Â
rf^2/sqrt(rf) = wi ri^2/sqrt(u g)Â
Finally we get:
rf^(3/2) = wi ri^2/sqrt(u g)Â
Substituting given
values:
rf^(3/2) = 2.5 * 0.28^2/sqrt(0.74 * 9.8)Â
rf^(3/2) = 0.07278
rf = 0.07278^(2/3)Â
rf = 0.17 mÂ
Ans: 0.17 mÂ